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The typical fluid system — on which the Rigid Planar Flow (PF) mechanical system is based — is discussed,
e.g., in §9.2 of Kundu, Fluid Mechanics, 6th ed.1 There, the fluid flow is incompressible, viscous, laminar, steady,
and unidirectional. Our boundaries are the familiar pair of infinite parallel plates with fixed separation h, but we
allow both the top and bottom boundary plates to move (rather than just the top one) and denote their respective
fixed velocities by Utop and Ubottom. For this simple setup, it is straightforward to solve the fluid equations exactly,
and one obtains the steady-state velocity profile with a familiar parabolic functional form:

u(y) = Ubottom +
Utop − Ubottom

h
y − dp/dx

2µ
y(h− y).

Like all SSNS mini-apps, the PF mini-app offers the ability to explore a wide variety of time-dependent behavior.
Beyond that, however, PF aims to reproduce that parabolic steady-state velocity profile, but with a purely mechanical
system. Thus, we replace the layers of fluid with a stack of N infinite rigid slabs, each ℓ× w × h/N . Laminar flow
is thus built in, and, in place of shear stress τ = µ ∂u/∂y , we have a frictional force between neighboring slabs that
is linear in their relative velocity ∆v. 2 The pressure gradient dp/dx — which turns out to be constant in the fluid
problem — is replaced by an external pressure difference per length ∆p/ℓ applied across the upstream/downstream
faces.

We have the following expressions for the mass, pressure force, and frictional force — all per unit length:
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Combining them, we have the net-force-per-length and acceleration of the ith slab:
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1doi.org/10.1016/C2012-0-00611-4
2We will reuse µ as the constant of proportionality, but keep in mind that it is not a true viscosity. Also, while we keep the fluid

system’s stream-wise x̂ and cross-stream ŷ axes, we prefer to use v for the x̂-velocities rather than u.
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where α ≡ h2

µN2
∆p
ℓ is a useful combination of parameters that has dimensions of velocity and quantifies the balance

between the pressure-derived normal stresses and friction-derived shear stresses.
So we have a system of linear equations for the slab accelerations ai in terms of the slab velocities vi. It is

convenient to incorporate the boundary velocities into the slab velocity vector as “ghost cells” v0 = Utop and
vN+1 = Ubottom, respectively. In both paper expressions and computer arrays, the N slabs will be indexed from
i = 1 to i = N . For the time evolution of the system, we use numerical integration as described below, with the
length N + 2 vector v being used to calculate the middle N entries of the length N + 2 acceleration vector a. The
end entries a0 and aN+1 are set equal to zero, which makes sense since the boundary velocities are fixed. For the
time-independent steady state (also described below), we find it easier to deal with length N vectors and matrices,
and will fold Utop and Ubottom into the 1st and Nth entries of a vector α.

For numerical integration, we’ve implemented both forward Euler and Runge-Kutta (RK4) schemes. Since
accuracy in the approach-to-steady-state trajectory is not terribly important, there’s no compelling reason to use
RK4, so Euler is the default choice 3. The forward Euler scheme to update the velocity of the ith slab is:

ai =
dvi
dt

∼=
∆vi
∆t

=⇒ vi,new ∼= vi + ai∆t,

where ai is given by the expression above 4. Of course, numerical stability is an issue and dictates our choice for
the size of the time step ∆t. We employ a simple heuristic to determine the default value: ∆tdef. = 0.1/(µN2).
The ∆t entry field is populated with this value on app load, but that’s the extent of the guidance — subsequent
changes to ∆t or parameter values may result in instability or needlessly slow approach to steady state.

Intuitively, we sense that — for fixed parameter values — the system will eventually reach a state of force
balance where each slab has a fixed (but generally nonzero) velocity. This steady state (or steady flow) can be
found analytically by setting ai = 0:

0 = ai =
µN2

ρh2
[vi+1 + vi−1 − 2vi − α] , 1 ≤ i ≤ N

=⇒ vi+1 + vi−1 − 2vi = α, 1 ≤ i ≤ N

As mentioned above, the equations for ai=1 and ai=N involve v0 = Utop and vN+1 = Ubottom, respectively. However,
length N vectors/matrices will suffice in this case, rather than length N + 2. Let vs be the length N state vector
we seek, and let A be the N ×N tridiagonal matrix with elements Aij = δi,i+1 + δi,i−1 − 2δii. The boundary slab
speeds can be brought to the opposite side and incorporated into a length N vector α, giving us the following vector
equation to solve:

Avs = α ≡



α− Utop

α
α
...
α

α− Ubot.



The inverse matrix A−1 can be found by standard techniques. It is symmetric (but not tridiagonal) and — on
the diagonal and upper right — has elements:

(A−1)ij =
−i(N − j + 1)

N + 1
, 1 ≤ i ≤ j ≤ N.

3The setting is easy to change, just not through the UI.
4In the PF implementation we again use forward Euler to get position information by integrating vi = dxi/dt , but this is only for

the qualitative visualization of the moving slabs — the general focus is on the slab velocities.
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The lower left elements are given by (A−1)ij = (A−1)ji, and the steady state is found as vs = A−1Avs = A−1α.
Writing out the expression for the ith element vs,i, we have:
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This expression can be extended back to length N + 2 to reproduce the boundary conditions vs,i=0 = Utop and
vs,i=N+1 = Ubottom. Further, if we use the definition of α above and make the substitutions 5:

i

N
−→ 1− y

h
or

N − i

N
−→ y

h
and

∆p

ℓ
−→ dp

dx
,

while taking N → ∞, we recover our original parabolic velocity profile:

5Utop corresponds to i = 0, but y = h, so we must reflect either the discrete or continuous coordinate to get the other.
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